
Recruits AI: Dynamic Combat Tactics

Jason El-Massih
Commotion Games, jel-massih@hotmail.com
http://www.recruitsgame.com/

Introduction

One of the biggest challenges for Game AI is to create Intelligent and Natural behavior.
The AI’s ability to adapt to different situations is difficult to achieve with many
techniques, such as pre-placed tactic Hints. It becomes easy for a developer to give into
the norm and have the AI system rely on pre-decided actions or Scripting. It is essential
that tactical games provide significantly smarter and increasingly responsive AI to
increase the challenge, rather than simply buffing the health and damage.

In this document, I will describe the design of the Tactical Combat AI for the game
“Recruits”; Commotion Games’ Independently Developed Top Down Shooter using the
Unreal Development Kit. In Recruits, the AI are presented with a wide array of dynamic
situations and terrain, and are tailored to react in believable and tactically sound ways. I
will start by defining Dynamic Combat Tactics in relation to this article, and how it is
incorporated into Recruits AI. Then I will describe the various concepts and mechanics
behind the Dynamic Combat Tactics system, Position Evaluation and its application, as
well as Suppression and Indirect Fire. Finally, I will talk about my experiences with
Dynamic Combat Tactics within Recruits, and the many limitations that had to be
worked around due to the use of Unreal Development Kit.

Terminology
Throughout this document I will be making references to the term “goal”. When I use
this term, it means the current task that the AI Agent is undertaking. Some examples of
this are: Shoot at the target, throw a grenade near the target, run to cover, move up
and flank the target, etc.
I will be also be using the term Agent to reference the actual physical representation of
the AI, such as the Pawn or Bot.

Why Dynamic Combat Tactics?
The new Generation of First-Person and Third-Person combat Games can include a
number of the following challenging characteristics:

● Non-Linear Player Fight Paths with a multitude of scenarios
● AI Squads carrying out orders from the player at any location
● Changing Paths and Cover locations from destructible environment
● Advanced, Believable Tactics in Complex and Dynamic Environments

A very common approach to creating Tactical AI in Shooters is a combination of scripts
and level placed tactics hints (for example marking, ambush or safe locations). Scripts
allow for the AI to react to a very specific situation, and provide a powerful and
predictable solution, however, any deviations from the situation can produce less than
desirable results (Non Tactical Behavior, for example, such as running from cover or
ignoring the player). The need to fight anywhere, from threats that can appear
anywhere in a dynamic environment makes such methods unfeasible without placing
excessive amounts of hints and creating a slew of scripts. Pre-Defined Hints also cannot
provide situation-specific details, such as if the location is a good place for an ambush,
or if it is good place to Hide. Likewise, Scripts and their extremely linear approach to
situational awareness are not suitable for balancing the dozens of potential inputs from
the environment to tailor a tactical decision.

What are Dynamic Combat Tactics?
The AI has Dynamic Combat Tactics when it tailors its decisions based on the current
situation and terrain using on-the-fly algorithms and dynamic Inputs. For example,
when an AI selects a new position to move to, it takes the various lines of Fire, its
Exposure to threats, and its proximity to nearby units into account. Whenever the AI is
selecting a path, the path is chosen based on its degree of safety from threats, rather
than just simply the shortest distance. This permits the AI’s goals to be abandoned or
adapted as new threats arise and new possibilities are opened up. The Player will be
able to notice this system by the AI acting more responsive to subtle differences in his
actions and positioning. The AI will act more tactically sound even in extremely complex
situations with multiple moving threats, ever-changing terrain, and incoming threats to
avoid. The player is able to experience an advanced, yet amazingly robust, execution of
a wide set of tactics anytime and anywhere in the game world.

This System also takes the pressure off of level designers because they can concentrate
more on the overall flow of the encounters, and still get generally good AI behavior.

This allows for a significant reduction in the amount of time spent with scripting and
placing Hints, if not complete elimination of the need altogether.

Overview of Recruits AI
Recruits is a top down shoot-em-up taking place in the Vietnam War Era. It plays an
odd twist on the genre by presenting tactical game-play over the traditional Arcade
feeling familiar with most Shootem’ups. It being a Coop centered game, the players
friendly AI must behave in a believable, tactical manner that simulates human behavior

To be able to understand where Recruits AI is being made more Dynamic, I will
describe the think cycle of an AI agent. At any time, the agent pursues its most
desirable goal based on the current situation (ex. Defending position, flanking the
player, throwing a grenade, advancing its position). The Agent will pursue that goal
until one of numerous events occur, Goal is achieved, Goal is no longer achievable, or a
new goal is more desirable.

In Recruits, the AI computes its destination based completely on dynamic information
gained from its environment such as the amount of cover from threat, various lines of
fire to friendlies and enemies, goal assignments and proximity to other agents. Even
when not performing a movement operation, like throwing grenades or indirect fire, the
AI still relies heavily on Position Evaluation for completing its task in the most tactically
sound manner.

Dynamic Combat Tactics: Concepts and
Examples
Position Evaluation is the Keystone of my approach to getting tactical AI. Almost every
potential goal of an AI Agent incorporates the use of a position evaluation function. It
enables the agent to get both static and dynamic information about its environment and
combine it into one number. This allows a robust and universal method of allowing the
agent to decide on the most tactical action or goal.

Position Evaluation Functions
Position Evaluation Functions are a well-known AI technique. They allow the AI to
determine which position is the most attractive one to move to, the most useful goal to
pursue or which threat to prioritize. An example would be if a Position Evaluation
Function in Recruits is computing the presence of cover in nearby locations from a given
threat. This gets taken into account when deciding on a location’s overall desirability.

One of my objectives for Recruits AI was to get the agents to behave as close as
possible to how a normal human would behave. It is also not feasible to have the AI
predict every possible hostile action in a 3D environment due to the amount of
calculations and performance cost it would have, with the AI only having access to
limited resources. Therefore, Instead of using a mini max tree search or similar to go
through every possible action beforehand, the AI compensates for small hostile actions
with its representations of Line-of-Fires and generalized condition checks. This provides
for a fairly intelligent system that still makes the occasional mistake, similar to how a
player would.

Tactical Position Picking
During combat, an AI Agent will frequently need to change position to achieve its goal.
Some examples of this are for the AI to pick a new position to move up to, flank the
player to get better line of sight/firing angle and Move away from a grenade. Generally,
The AI will attempt to pick a new location that is suitable to meet its goal, and provides
the greatest tactical advantage.

To pick a position to move to, the AI considers all possible positions within an area
around the agent know as its Area-of-operations. From these positions, it then
eliminates any positions that are already occupied by another agent and any positions
outside the Area of Operations. A position Evaluation function is then invoked on each
remaining position within the pool, assigning a score of desirability. The Higher the
score, the more attractive the position is for the agent.

A Post Process Step is then performed to verify which of the highest scoring positions is
suitable for the agent’s current goal. An Example of this is if the Agent is trying to find
cover in the middle of an empty field. Even the highest scoring position will not provide
cover. For Recruits this is solved by Level Placed Nodes that are given a priority,
however in many cases the AI may simply abort its search for cover.

All weights are non-negative values to allow solely for the inputs to reflect the
attractiveness of a position. For Example, rather than subtracting the distance weight
from the score, the value is increased based on the proximity the position is to the
agent.

Table 1 below shows several examples of functions used in Recruits.

Table 1 Examples of inputs for the position evaluation function.

Position Evaluation Input Description: (Rewards higher score for...)

Proximity to current Position Being closer from current Position

Proximity From Goal Being closer to goal (if applicable)

Cover From Threat Does Position Provide cover from threat

Line-Of-Fire to Target Can Shoot at Target

Within Optimal range from target Being Within an optimal range

Outside Danger Zone Outside potential blast areas

distance from friendlies Being within optimal range of friendlies

Wall Hugging Being Close to a wall or other obstacle

Unique Behavior Types Through Parametrization
Having Configurable Position Evaluation Functions allow for the creation of distinctive
behaviors between different character types. The Position Evaluation Function can be
tweaked and tuned so that different inputs can carry heavier weights. For Example, You
can adjust it so that positions closer to target carry a heavier weight, which would allow
for enemies with shotguns to have specialized behavior that allows for efficient use of
their weaponry.

Applying Dynamic Combat Tactics in Recruits
One of the biggest issues that I constantly ran into when developing the Dynamic
Combat AI is that Unreal script is SLOW. Since Recruits is being made with the Unreal
Development Kit, I do not have access to the Source code, and thus must do all of my
coding in their scripting language, Unreal script. This is very problematic when trying to
create a system that is capable of performing advanced calculations on the fly to adapt
to dynamic situations. I was able to perform a little trickery however, which allowed for
the AI to be capable of the functionality I wanted it to have. One of the biggest
resource savers I had was to simply only check what was necessary, when it was
necessary. This is to say that rather than have the AI reevaluate its position every tick,
there is a general logical Tick that gets called every 2-5 seconds. What this logic tick
does is very quickly check for any changing conditions within the environment and
adjust its current goal accordingly. An example could be that the AI is trying to reload,
however the target ran around and flanked the agent, giving it better LOS. Instead of
the AI completing its current task of reloading and just remaining in its current position
like a sitting duck, if the agent was able to see the target move on its position, it will
abort the reload, seek a new destination that provides cover from the threat, and then
complete its reload action. By having this logic tick at an adjustable rate, it allows for
varying difficulty of AI through having them play more tactically and aware, rather than
simply buffing their health or damage. By allowing the agent to check its environment
more often, it will allow for more difficult and intelligent AI.

However, by having too many AI agents with an extremely low logic tick rate,
performance can begin to be reduced due to the amount of checks that need to be run.
To counteract this, I did many optimizations with the position evaluation functions. One
of the quickest and most efficient optimization I performed was having the AI have an
“Area-of-Operations”. This allowed for me to quickly check the position-nodes within the
area, and simply discard all the nodes outside. In the event that the agent’s current
goal lies outside of its area-of-operations, rather than simply expanding the radius, and
ultimately the performance hit, I assign bonus weights to nodes that towards the
direction of the goal. This allows for the AI to move towards its goal whilst moving
tactically and safely rather than running around blindly and dangerously.

Pathfinding for Recruits has been a sheer Nightmare. We are using a mix of
navigation meshes and custom position-nodes for all the pathfinding. However, Unreal
Development Kit’s NavMesh system is an absolute Wreck. Although it has come far
since it was first introduced, it is still one headache after another. It is also a major
setback with how inaccurate the pathfinding can be, with the Agent taking rather long,
extraneous detours to a specified position rather than a nice, simple, clean route. Also,

due to not having access to source, and no native support for pathfinding that takes
threats Line of sight into account, a lot of the position finding has to be filtered in the
position evaluation function since the agent will always take the shortest route to its
target destination. This has been relatively challenging yet exciting to overcome since
it’s such a major limitation, yet has been circumvented in a rather reasonable fashion.
One thing I had to do was to provide higher preference to cover that is closer to the
agent rather than the threat. Although this still can have many issues, it does a rather
reasonable job of eliminating more blatantly stupid decisions and paths, and the
occasional mistake allows for a unique window that the threat can utilize to eliminate
the Agent.

Another Key component to having the AI behave as rationally as possible and to
limitate any flaws with the pathfinding is the Level Design. It is essential to ensure that
there is no bugs in the NavMeshes generation that can cause key areas to be blocked
off or become otherwise inaccessible. It is unfortunate that within the Unreal
Development Kit, this happens very often and is a headache to fix. It is also very helpful
to limit the amount of unnecessarily placed nodes. The way the AI is designed is that it
is perfectly usable without any nearby nodes, their fore even if the player goes to a
secluded area unmapped by the Level designer, the AI will still be combat effective and
not break.

The Accomplishment I am proudest of is not necessarily the AI itself, but rather
creating AI in such a way that it is both efficient and effective in such a limited and
unsuitable environment such as the Unreal Development Kit. The Creation of this AI has
enormously developed my skills at not only pioneering new techniques with the
Development Kit, but wringing the limits to get every ounce of potential out of them as
possible. Although there is still much work to be done on the AI described in this
document, it is my belief that even creating something that has been made is quite an
accomplishment.

Future Improvements:

Multi-Threat Tracking
One Major Improvement I wish to make on the system is the use of Multi-Threat
Tracking. That is, that rather than simply taking the primary threat’s status into account
when performing a decision, but to incorporate other secondary threats. If done
correctly, this will allow for significantly more intelligent and Responsive AI that will be
more capable of adapting to a significantly wider array of situations. One potential
problem with this addition however would be having the AI becoming almost too
responsive and extremely difficult to defeat.

Conditionalized Heuristics based on Goal.
Another improvement to the system I plan on tackling is to adjust the AI’s Heuristic to
take its current goal into account. This will allow for the AI to choose its position not
tactically alone, but rather on it current goal. Currently, if an agent’s goal is to throw a
grenade at the enemy position, it will prefer to position itself so that it has a clear line
of sight and cover from the threat and then throw the grenade to weed out the threat.
An example of a conditionalized Heuristic would be if the agent would move to a
location that would provide complete cover, throw the grenade by performing indirect
fire checks, and then positioning itself to shoot the threat.

Acknowledgements
I would like to thank Remco Straatman and Arjen Beij for their work at Guerrilla and
establishing many of the ideas and concepts used in this document.

Biography
Jason El-Massih is a programmer for Commotion Games. He has recently graduated
from High School and is clueless about his future. With little formal programming
education, he just runs around doing what he loves and learns as he goes. He likes long
walks on the beach, talking in the third person and Turtles.
(jel-massih@hotmail.com, http:\\jel-massih.com)

